Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37034705

RESUMO

Many important neurocognitive states, such as performing natural activities and fluctuations of arousal, shift over minutes-to-hours in the real-world. We harnessed 3-12 days of continuous multi-electrode intracranial recordings in twenty humans during natural behavior (socializing, using digital devices, sleeping, etc.) to study real-world neurodynamics. Applying deep learning with dynamical systems approaches revealed that brain networks formed consistent stable states that predicted behavior and physiology. Changes in behavior were associated with bursts of rapid neural fluctuations where brain networks chaotically explored many configurations before settling into new states. These trajectories traversed an hourglass-shaped structure anchored around a set of networks that slowly tracked levels of outward awareness related to wake-sleep stages, and a central attractor corresponding to default mode network activation. These findings indicate ways our brains use rapid, chaotic transitions that coalesce into neurocognitive states slowly fluctuating around a stabilizing central equilibrium to balance flexibility and stability during real-world behavior.

2.
J Neurosci ; 43(23): 4291-4303, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142430

RESUMO

According to a classical view of face perception (Bruce and Young, 1986; Haxby et al., 2000), face identity and facial expression recognition are performed by separate neural substrates (ventral and lateral temporal face-selective regions, respectively). However, recent studies challenge this view, showing that expression valence can also be decoded from ventral regions (Skerry and Saxe, 2014; Li et al., 2019), and identity from lateral regions (Anzellotti and Caramazza, 2017). These findings could be reconciled with the classical view if regions specialized for one task (either identity or expression) contain a small amount of information for the other task (that enables above-chance decoding). In this case, we would expect representations in lateral regions to be more similar to representations in deep convolutional neural networks (DCNNs) trained to recognize facial expression than to representations in DCNNs trained to recognize face identity (the converse should hold for ventral regions). We tested this hypothesis by analyzing neural responses to faces varying in identity and expression. Representational dissimilarity matrices (RDMs) computed from human intracranial recordings (n = 11 adults; 7 females) were compared with RDMs from DCNNs trained to label either identity or expression. We found that RDMs from DCNNs trained to recognize identity correlated with intracranial recordings more strongly in all regions tested-even in regions classically hypothesized to be specialized for expression. These results deviate from the classical view, suggesting that face-selective ventral and lateral regions contribute to the representation of both identity and expression.SIGNIFICANCE STATEMENT Previous work proposed that separate brain regions are specialized for the recognition of face identity and facial expression. However, identity and expression recognition mechanisms might share common brain regions instead. We tested these alternatives using deep neural networks and intracranial recordings from face-selective brain regions. Deep neural networks trained to recognize identity and networks trained to recognize expression learned representations that correlate with neural recordings. Identity-trained representations correlated with intracranial recordings more strongly in all regions tested, including regions hypothesized to be expression specialized in the classical hypothesis. These findings support the view that identity and expression recognition rely on common brain regions. This discovery may require reevaluation of the roles that the ventral and lateral neural pathways play in processing socially relevant stimuli.


Assuntos
Eletrocorticografia , Reconhecimento Facial , Adulto , Feminino , Humanos , Encéfalo , Redes Neurais de Computação , Reconhecimento Facial/fisiologia , Lobo Temporal/fisiologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos
3.
Behav Res Methods ; 55(5): 2333-2352, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35877024

RESUMO

Eye tracking and other behavioral measurements collected from patient-participants in their hospital rooms afford a unique opportunity to study natural behavior for basic and clinical translational research. We describe an immersive social and behavioral paradigm implemented in patients undergoing evaluation for surgical treatment of epilepsy, with electrodes implanted in the brain to determine the source of their seizures. Our studies entail collecting eye tracking with other behavioral and psychophysiological measurements from patient-participants during unscripted behavior, including social interactions with clinical staff, friends, and family in the hospital room. This approach affords a unique opportunity to study the neurobiology of natural social behavior, though it requires carefully addressing distinct logistical, technical, and ethical challenges. Collecting neurophysiological data synchronized to behavioral and psychophysiological measures helps us to study the relationship between behavior and physiology. Combining across these rich data sources while participants eat, read, converse with friends and family, etc., enables clinical-translational research aimed at understanding the participants' disorders and clinician-patient interactions, as well as basic research into natural, real-world behavior. We discuss data acquisition, quality control, annotation, and analysis pipelines that are required for our studies. We also discuss the clinical, logistical, and ethical and privacy considerations critical to working in the hospital setting.


Assuntos
Encéfalo , Comportamento Social , Humanos , Privacidade
4.
PLoS Biol ; 20(7): e3001675, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35900975

RESUMO

The ability to recognize abstract features of voice during auditory perception is an intricate feat of human audition. For the listener, this occurs in near-automatic fashion to seamlessly extract complex cues from a highly variable auditory signal. Voice perception depends on specialized regions of auditory cortex, including superior temporal gyrus (STG) and superior temporal sulcus (STS). However, the nature of voice encoding at the cortical level remains poorly understood. We leverage intracerebral recordings across human auditory cortex during presentation of voice and nonvoice acoustic stimuli to examine voice encoding at the cortical level in 8 patient-participants undergoing epilepsy surgery evaluation. We show that voice selectivity increases along the auditory hierarchy from supratemporal plane (STP) to the STG and STS. Results show accurate decoding of vocalizations from human auditory cortical activity even in the complete absence of linguistic content. These findings show an early, less-selective temporal window of neural activity in the STG and STS followed by a sustained, strongly voice-selective window. Encoding models demonstrate divergence in the encoding of acoustic features along the auditory hierarchy, wherein STG/STS responses are best explained by voice category and acoustics, as opposed to acoustic features of voice stimuli alone. This is in contrast to neural activity recorded from STP, in which responses were accounted for by acoustic features. These findings support a model of voice perception that engages categorical encoding mechanisms within STG and STS to facilitate feature extraction.


Assuntos
Córtex Auditivo , Percepção da Fala , Voz , Estimulação Acústica , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética , Percepção da Fala/fisiologia , Lobo Temporal/fisiologia
5.
Cereb Cortex ; 32(20): 4480-4491, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136991

RESUMO

The mechanism of action of deep brain stimulation (DBS) to the basal ganglia for Parkinson's disease remains unclear. Studies have shown that DBS decreases pathological beta hypersynchrony between the basal ganglia and motor cortex. However, little is known about DBS's effects on long range corticocortical synchronization. Here, we use machine learning combined with graph theory to compare resting-state cortical connectivity between the off and on-stimulation states and to healthy controls. We found that turning DBS on increased high beta and gamma band synchrony (26 to 50 Hz) in a cortical circuit spanning the motor, occipitoparietal, middle temporal, and prefrontal cortices. The synchrony in this network was greater in DBS on relative to both DBS off and controls, with no significant difference between DBS off and controls. Turning DBS on also increased network efficiency and strength and subnetwork modularity relative to both DBS off and controls in the beta and gamma band. Thus, unlike DBS's subcortical normalization of pathological basal ganglia activity, it introduces greater synchrony relative to healthy controls in cortical circuitry that includes both motor and non-motor systems. This increased high beta/gamma synchronization may reflect compensatory mechanisms related to DBS's clinical benefits, as well as undesirable non-motor side effects.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor , Doença de Parkinson , Gânglios da Base , Cognição , Humanos , Doença de Parkinson/terapia
6.
J Neurosci ; 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099511

RESUMO

The map of category-selectivity in human ventral temporal cortex (VTC) provides organizational constraints to models of object recognition. One important principle is lateral-medial response biases to stimuli that are typically viewed in the center or periphery of the visual field. However, little is known about the relative temporal dynamics and location of regions that respond preferentially to stimulus classes that are centrally viewed, like the face- and word-processing networks. Here, word- and face-selective regions within VTC were mapped using intracranial recordings from 36 patients. Partially overlapping, but also anatomically dissociable patches of face- and word-selectivity were found in VTC. In addition to canonical word-selective regions along the left posterior occipitotemporal sulcus, selectivity was also located medial and anterior to face-selective regions on the fusiform gyrus at the group level and within individual male and female subjects. These regions were replicated using 7 Tesla fMRI in healthy subjects. Left hemisphere word-selective regions preceded right hemisphere responses by 125 ms, potentially reflecting the left hemisphere bias for language; with no hemispheric difference in face-selective response latency. Word-selective regions along the posterior fusiform responded first, then spread medially and laterally, then anteriorally. Face-selective responses were first seen in posterior fusiform regions bilaterally, then proceeded anteriorally from there. For both words and faces, the relative delay between regions was longer than would be predicted by purely feedforward models of visual processing. The distinct time-courses of responses across these regions, and between hemispheres, suggest a complex and dynamic functional circuit supports face and word perception.SIGNIFICANCE STATEMENT:Representations of visual objects in the human brain have been shown to be organized by several principles, including whether those objects tend to be viewed centrally or peripherally in the visual field. However, it remains unclear how regions that process objects that are viewed centrally, like words and faces, are organized relative to one another. Here, invasive and non-invasive neuroimaging suggests there is a mosaic of regions in ventral temporal cortex that respond selectively to either words or faces. These regions display differences in the strength and timing of their responses, both within and between brain hemispheres, suggesting they play different roles in perception. These results illuminate extended, bilateral, and dynamic brain pathways that support face perception and reading.

7.
Schizophr Res ; 224: 126-132, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097368

RESUMO

BACKGROUND: Knowledge is lacking regarding deficits in selective attention and their underlying biological mechanisms during early stages of schizophrenia. The present study examined the N2pc, a neurophysiological index of covert spatial attention, and its cortical sources at first psychotic episode in the schizophrenia spectrum (FESz). METHODS: Neurophysiological responses measured simultaneously with magnetoencephalography (MEG) and electroencephalography (EEG) during pop-out and serial search tasks were compared between 32 FESz and 32 matched healthy controls (HC). Mean scalp-recorded N2pc was measured from a cluster of posterior-lateral EEG electrodes. Cortical source-resolved MEG activity contributing to the N2pc signal was derived for the intraparietal sulcus (IPS) and lateral occipital complex (LOC). RESULTS: Group differences in EEG N2pc varied by task demand. FESz exhibited reduced N2pc amplitude during pop-out (p < .01), but not serial search (p = .11). Furthermore, group differences in N2pc-related MEG cortical activity varied by task demand and cortical region. Compared to HC, FESz exhibited greater IPS during serial search (p < .01). DISCUSSION: Reductions in EEG N2pc amplitude indicate an impairment of visuo-spatial attention evident at an individual's first psychotic episode, specifically during conditions emphasizing bottom-up processing. Examination of its cortical sources with MEG revealed that, compared to HC, FESz engaged parietal structures to a greater extent during the serial search condition. This pattern suggests a less efficient, more resource intensive strategy employed by FESz in response to a minimal demand on attention. The greater reliance on this controlled attentional network may negatively impact real-world functions with much greater complexity and attentional demands.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Atenção , Eletroencefalografia , Humanos , Magnetoencefalografia
8.
J Psychiatr Res ; 130: 292-299, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32866678

RESUMO

Working memory dysfunction may be central to neurocognitive deficits in schizophrenia. Maintenance of visual information in working memory, or visual short-term memory (vSTM), is linked to general cognitive dysfunction and predicts functional outcome. Lateralized change-detection tasks afford investigation of the contralateral delay activity (CDA), a useful tool for investigating vSTM dysfunction. Previous work suggests "hyperfocusing" of attention in schizophrenia, such that CDA is increased when a single item is maintained in vSTM but reduced for multiple items. If observed early in the disease, vSTM dysfunction may be a key feature of schizophrenia or target for intervention. We investigated CDA during lateralized vSTM of one versus three items using sensor-level electroencephalography and source-level magnetoencephalography in 26 individuals at their first episode of schizophrenia-spectrum psychosis (FESz) and 26 matched healthy controls. FESz were unable to modulate CDA with increased memory load - high-load CDA was reduced and low-load CDA was increased compared to controls. Further, sources of CDA in posterior parietal cortex were reduced in FESz and indices of working memory were correlated with neurocognitive deficits and symptom severity. These results support working memory maintenance dysfunction as a central and early component to the disorder. Targeted intervention focusing on vSTM deficits may be warranted to alleviate downstream effects of this disability.


Assuntos
Memória de Curto Prazo , Esquizofrenia , Eletroencefalografia , Humanos , Lobo Parietal , Estimulação Luminosa , Esquizofrenia/complicações , Percepção Visual
9.
Front Psychiatry ; 11: 743, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848922

RESUMO

Cognitive deficits in people with schizophrenia are among the hardest to treat and strongly predict functional outcome. The ability to maintain sensory precepts in memory over a short delay is impacted early in the progression of schizophrenia and has been linked to reliable neurophysiological markers. Yet, little is known about the mechanisms of these deficits. Here, we investigated possible neurophysiological mechanisms of impaired visual short-term memory (vSTM, aka working memory maintenance) in the first-episode schizophrenia spectrum (FESz) using magnetoencephalography (MEG). Twenty-eight FESz and 25 matched controls performed a lateralized change detection task where they were cued to selectively attend and remember colors of circles presented in either the left or right peripheral visual field over a 1 s delay. Contralateral alpha suppression (CAS) during the delay period was used to assess selective attention to cued visual hemifields held in vSTM. Delay-period CAS was compared between FESz and controls and between trials presenting one vs three items per visual hemifield. CAS in dorsal visual cortex was reduced in FESz compared to controls in high-load trials, but not low-load trials. Group differences in CAS were found beginning 100 ms after the disappearance of the memory set, suggesting deficits were not due to the initial deployment of attention to the cued visual hemifield prior to stimulus presentation. CAS was not greater for high-load vs low-load trials in FESz subjects, although this effect was prominent in controls. Further, lateralized gamma (34-40 Hz) power emerged in dorsal visual cortex prior to the onset of CAS in controls but not FESz. Gamma power in this cluster differed between groups at both high and low load. CAS deficits observed in FESz were correlated with change detection accuracy, working memory function, estimated IQ, and negative symptoms. Our results implicate deficits in CAS in trials requiring broad, but not narrow, focus of attention to spatially distributed objects maintained in vSTM in FESz, possibly due to reduced ability to broadly distribute visuospatial attention (alpha) or disruption of object-location binding (gamma) during encoding/consolidation. This early pathophysiology may shed light upon mechanisms of emerging working memory deficits that are intrinsic to schizophrenia.

10.
Nat Commun ; 11(1): 4014, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782303

RESUMO

Perception reflects not only sensory inputs, but also the endogenous state when these inputs enter the brain. Prior studies show that endogenous neural states influence stimulus processing through non-specific, global mechanisms, such as spontaneous fluctuations of arousal. It is unclear if endogenous activity influences circuit and stimulus-specific processing and behavior as well. Here we use intracranial recordings from 30 pre-surgical epilepsy patients to show that patterns of endogenous activity are related to the strength of trial-by-trial neural tuning in different visual category-selective neural circuits. The same aspects of the endogenous activity that relate to tuning in a particular neural circuit also correlate to behavioral reaction times only for stimuli from the category that circuit is selective for. These results suggest that endogenous activity can modulate neural tuning and influence behavior in a circuit- and stimulus-specific manner, reflecting a potential mechanism by which endogenous neural states facilitate and bias perception.


Assuntos
Rede Nervosa/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Eletrocorticografia , Epilepsia/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa , Tempo de Reação/fisiologia
11.
Cereb Cortex ; 30(4): 2615-2626, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31989165

RESUMO

The subthalamic nucleus (STN) is proposed to participate in pausing, or alternately, in dynamic scaling of behavioral responses, roles that have conflicting implications for understanding STN function in the context of deep brain stimulation (DBS) therapy. To examine the nature of event-related STN activity and subthalamic-cortical dynamics, we performed primary motor and somatosensory electrocorticography while subjects (n = 10) performed a grip force task during DBS implantation surgery. Phase-locking analyses demonstrated periods of STN-cortical coherence that bracketed force transduction, in both beta and gamma ranges. Event-related causality measures demonstrated that both STN beta and gamma activity predicted motor cortical beta and gamma activity not only during force generation but also prior to movement onset. These findings are consistent with the idea that the STN participates in motor planning, in addition to the modulation of ongoing movement. We also demonstrated bidirectional information flow between the STN and somatosensory cortex in both beta and gamma range frequencies, suggesting robust STN participation in somatosensory integration. In fact, interactions in beta activity between the STN and somatosensory cortex, and not between STN and motor cortex, predicted PD symptom severity. Thus, the STN contributes to multiple aspects of sensorimotor behavior dynamically across time.


Assuntos
Estimulação Encefálica Profunda/métodos , Eletrocorticografia/métodos , Força da Mão/fisiologia , Córtex Motor/fisiologia , Córtex Somatossensorial/fisiologia , Núcleo Subtalâmico/fisiologia , Adulto , Idoso , Eletrodos Implantados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Desempenho Psicomotor/fisiologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-31451387

RESUMO

BACKGROUND: Little is known about neural oscillatory dynamics in first-episode psychosis. Pathophysiology of functional connectivity can be measured through network activity of alpha oscillations, reflecting long-range communication between distal brain regions. METHODS: Resting magnetoencephalographic activity was collected from 31 individuals with first-episode schizophrenia spectrum psychosis and 22 healthy control individuals. Activity was projected to the realistic cortical surface, based on structural magnetic resonance imaging. The first principal component of activity in 40 Brodmann areas per hemisphere was Hilbert transformed within the alpha range. Non-negative matrix factorization was applied to single-trial alpha phase-locking values from all subjects to determine alpha networks. Within networks, energy and entropy were compared. RESULTS: Four cortical alpha networks were pathological in individuals with first-episode schizophrenia spectrum psychosis. The networks involved the bilateral anterior and posterior cingulate; left auditory, medial temporal, and cingulate cortex; right inferior frontal gyrus and widespread areas; and right posterior parietal cortex and widespread areas. Energy and entropy were associated with the Positive and Negative Syndrome Scale total and thought disorder factors for the first three networks. In addition, the left posterior temporal network was associated with positive and negative factors, and the right inferior frontal network was associated with the positive factor. CONCLUSIONS: Machine learning network analysis of resting alpha-band neural activity identified several aberrant networks in individuals with first-episode schizophrenia spectrum psychosis, including the left temporal, right inferior frontal, right posterior parietal, and bilateral cingulate cortices. Abnormal long-range alpha communication is evident at the first presentation for psychosis and may provide clues about mechanisms of dysconnectivity in psychosis and novel targets for noninvasive brain stimulation.


Assuntos
Esquizofrenia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Lobo Parietal , Esquizofrenia/diagnóstico por imagem , Adulto Jovem
13.
Int J Geriatr Psychiatry ; 35(2): 147-152, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31617234

RESUMO

OBJECTIVES: More than half of patients with major depression who do not respond to initial antidepressants become treatment resistant (TRD), and while electroconvulsive therapy (ECT) is effective, it involves anesthesia and other medical risks that are of concern in geriatric patients. Past studies have suggested that theta cordance (TC), a correlate of cerebral metabolism measured by electroencephalography, could guide treatment decisions related to patient selection and engagement of the therapeutic target. METHODS/DESIGN: Eight patients with late-life treatment resistant depression (LL-TRD) underwent magnetoencephalography (MEG) at baseline and following seven sessions of ECT. We tested whether the mean and regional frontal cortex TC were able to differentiate early responders from nonresponders. RESULTS: Five patients whose depression severity decreased by >30% after seven sessions were considered early responders. We found no baseline differences in mean frontal TC between early responders compared with nonresponders, but early responders exhibited a significant increase in TC following ECT. Further, we found that compared with nonresponders, early responders exhibited a greater change in TC specifically within the right prefrontal cortex. CONCLUSIONS: These results support the hypothesis that increases in frontal TC are associated with antidepressant response. We expand on previous findings by showing that this change is specific to the right prefrontal cortex. Validation of this neural marker could contribute to improved ECT outcomes, by informing early clinical decisions about the acute efficacy of this treatment.


Assuntos
Transtorno Depressivo Resistente a Tratamento/terapia , Eletroconvulsoterapia , Lobo Frontal/fisiologia , Ritmo Teta/fisiologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
14.
Neuroimage ; 199: 366-374, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31154045

RESUMO

Deep brain stimulation (DBS) is an established and effective treatment for several movement disorders and is being developed to treat a host of neuropsychiatric disorders including epilepsy, chronic pain, obsessive compulsive disorder, and depression. However, the neural mechanisms through which DBS produces therapeutic benefits, and in some cases unwanted side effects, in these disorders are only partially understood. Non-invasive neuroimaging techniques that can assess the neural effects of active stimulation are important for advancing our understanding of the neural basis of DBS therapy. Magnetoencephalography (MEG) is a safe, passive imaging modality with relatively high spatiotemporal resolution, which makes it a potentially powerful method for examining the cortical network effects of DBS. However, the degree to which magnetic artifacts produced by stimulation and the associated hardware can be suppressed from MEG data, and the comparability between signals measured during DBS-on and DBS-off conditions, have not been fully quantified. The present study used machine learning methods in conjunction with a visual perception task, which should be relatively unaffected by DBS, to quantify how well neural data can be salvaged from artifact contamination introduced by DBS and how comparable DBS-on and DBS-off data are after artifact removal. Machine learning also allowed us to determine whether the spatiotemporal pattern of neural activity recorded during stimulation are comparable to those recorded when stimulation is off. The spatiotemporal patterns of visually evoked neural fields could be accurately classified in all 8 patients with DBS implants during both DBS-on and DBS-off conditions and performed comparably across those two conditions. Further, the classification accuracy for classifiers trained on the spatiotemporal patterns evoked during DBS-on trials and applied to DBS-off trials, and vice versa, were similar to that of the classifiers trained and tested on either trial type, demonstrating the comparability of these patterns across conditions. Together, these results demonstrate the ability of MEG preprocessing techniques, like temporal signal space separation, to salvage neural data from recordings contaminated with DBS artifacts and validate MEG as a powerful tool to study the cortical consequences of DBS.


Assuntos
Artefatos , Córtex Cerebral/fisiologia , Estimulação Encefálica Profunda/normas , Magnetoencefalografia/normas , Doença de Parkinson/terapia , Percepção Visual/fisiologia , Adulto , Idoso , Córtex Cerebral/diagnóstico por imagem , Feminino , Globo Pálido/cirurgia , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Análise Espaço-Temporal , Núcleo Subtalâmico/cirurgia , Adulto Jovem
15.
Trends Cogn Sci ; 23(7): 534-536, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31103440

RESUMO

Measures of brain activity with high temporal resolution have shown that the information represented in a single brain region undergoes dynamic changes on the scale of milliseconds. This dynamic process presents a unique inferential challenge to low temporal resolution neural measures, such as BOLD fMRI. Potential solutions for fMRI requiring further investigation and development are discussed.


Assuntos
Encéfalo/diagnóstico por imagem , Neuroimagem Funcional , Imageamento por Ressonância Magnética , Encéfalo/fisiologia , Eletroencefalografia , Humanos , Lobo Temporal/fisiologia , Fatores de Tempo
16.
Cereb Cortex ; 29(7): 3209-3219, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-30124788

RESUMO

Though the fusiform is well-established as a key node in the face perception network, its role in facial expression processing remains unclear, due to competing models and discrepant findings. To help resolve this debate, we recorded from 17 subjects with intracranial electrodes implanted in face sensitive patches of the fusiform. Multivariate classification analysis showed that facial expression information is represented in fusiform activity and in the same regions that represent identity, though with a smaller effect size. Examination of the spatiotemporal dynamics revealed a functional distinction between posterior fusiform and midfusiform expression coding, with posterior fusiform showing an early peak of facial expression sensitivity at around 180 ms after subjects viewed a face and midfusiform showing a later and extended peak between 230 and 460 ms. These results support the hypothesis that the fusiform plays a role in facial expression perception and highlight a qualitative functional distinction between processing in posterior fusiform and midfusiform, with each contributing to temporally segregated stages of expression perception.


Assuntos
Expressão Facial , Reconhecimento Facial/fisiologia , Lobo Temporal/fisiologia , Adulto , Idoso , Mapeamento Encefálico/métodos , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador , Adulto Jovem
17.
PLoS Biol ; 16(11): e2004188, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500809

RESUMO

During adolescence, the integration of specialized functional brain networks related to cognitive control continues to increase. Slow frequency oscillations (4-10 Hz) have been shown to support cognitive control processes, especially within prefrontal regions. However, it is unclear how neural oscillations contribute to functional brain network development and improvements in cognitive control during adolescence. To bridge this gap, we employed magnetoencephalography (MEG) to explore changes in oscillatory power and phase coupling across cortical networks in a sample of 68 adolescents and young adults. We found a redistribution of power from lower to higher frequencies throughout adolescence, such that delta band (1-3 Hz) power decreased, whereas beta band power (14-16 and 22-26 Hz) increased. Delta band power decreased with age most strongly in association networks within the frontal lobe and operculum. Conversely, beta band power increased throughout development, most strongly in processing networks and the posterior cingulate cortex, a hub of the default mode (DM) network. In terms of phase, theta band (5-9 Hz) phase-locking robustly decreased with development, following an anterior-to-posterior gradient, with the greatest decoupling occurring between association networks. Additionally, decreased slow frequency phase-locking between frontolimbic regions was related to decreased impulsivity with age. Thus, greater decoupling of slow frequency oscillations may afford functional networks greater flexibility during the resting state to instantiate control when required.


Assuntos
Desenvolvimento do Adolescente/fisiologia , Cognição/fisiologia , Magnetoencefalografia/métodos , Adolescente , Adulto , Encéfalo/patologia , Mapeamento Encefálico/métodos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Feminino , Humanos , Comportamento Impulsivo/fisiologia , Masculino , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
18.
Proc Natl Acad Sci U S A ; 115(42): 10542-10544, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30275333
19.
Psychol Sci ; 29(9): 1463-1474, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29991326

RESUMO

Magnetoencephalography (MEG) was used to compare memory processes in two experiments, one involving recognition of word pairs and the other involving recall of newly learned arithmetic facts. A combination of hidden semi-Markov models and multivariate pattern analysis was used to locate brief "bumps" in the sensor data that marked the onset of different stages of cognitive processing. These bumps identified a separation between a retrieval stage that identified relevant information in memory and a decision stage that determined what response was implied by that information. The encoding, retrieval, decision, and response stages displayed striking similarities across the two experiments in their duration and brain activation patterns. Retrieval and decision processes involve distinct brain activation patterns. We conclude that memory processes for two different tasks, associative recognition versus arithmetic retrieval, follow a common spatiotemporal neural pattern and that both tasks have distinct retrieval and decision stages.


Assuntos
Encéfalo/fisiologia , Magnetoencefalografia , Memória/fisiologia , Reconhecimento Psicológico/fisiologia , Adolescente , Adulto , Mapeamento Encefálico/métodos , Neurociência Cognitiva , Feminino , Humanos , Masculino , Cadeias de Markov , Análise Multivariada , Tempo de Reação/fisiologia , Análise e Desempenho de Tarefas , Adulto Jovem
20.
Neuroimage ; 162: 32-44, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813643

RESUMO

The lack of multivariate methods for decoding the representational content of interregional neural communication has left it difficult to know what information is represented in distributed brain circuit interactions. Here we present Multi-Connection Pattern Analysis (MCPA), which works by learning mappings between the activity patterns of the populations as a factor of the information being processed. These maps are used to predict the activity from one neural population based on the activity from the other population. Successful MCPA-based decoding indicates the involvement of distributed computational processing and provides a framework for probing the representational structure of the interaction. Simulations demonstrate the efficacy of MCPA in realistic circumstances. In addition, we demonstrate that MCPA can be applied to different signal modalities to evaluate a variety of hypothesis associated with information coding in neural communications. We apply MCPA to fMRI and human intracranial electrophysiological data to provide a proof-of-concept of the utility of this method for decoding individual natural images and faces in functional connectivity data. We further use a MCPA-based representational similarity analysis to illustrate how MCPA may be used to test computational models of information transfer among regions of the visual processing stream. Thus, MCPA can be used to assess the information represented in the coupled activity of interacting neural circuits and probe the underlying principles of information transformation between regions.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Aprendizado de Máquina , Rede Nervosa/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Encéfalo/fisiologia , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética , Modelos Neurológicos , Vias Neurais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...